
iPhone Apps Development using
Objective C & Xcode

By Dannis Mok

1

Create an Apple ID

• One must have the Apple ID to download the
Development Tools
(https://appleid.apple.com/account)

2

https://appleid.apple.com/account

Register as Apple Developer

• One must register as Apple Developer to deploy
the apps onto the device for testing and also
posted the apps to App Store for selling.
(https://developer.apple.com/register/index.action)

3

https://developer.apple.com/register/index.action

Environment Setup

• Download the Xcode IDE from Apple and
install onto the MAC.
(https://developer.apple.com/downloads/index.action)

4

https://developer.apple.com/downloads/index.action

New Command Line Project

• Use Xcode to create a new command line project

5

New Command Line Project

• Fill in the Project name and create

6

New Command Line Project
Comments begin

with //

Program Structure.
Main() is the entry

point of the program

Project
structure

7

Objective-C Introduction

• It is based on traditional C programming
language and syntax.

• It add the object-oriented features to the C
language and have some new syntax.

• Its root is from NEXT computer, a company
owned by Steve Jobs

8

Objective-C – (Variables)

• Variables
– Variable name must start with letter or underline (_).

– Variables are case sensitive.

– Variable name cannot be the reserved keywords

9

Objective-C – (Data Types)

• Variables must be defined to contain certain
type of data.

• e.g int k = 10;

10

Objective-C – (Data Types)

• Data Types and their usage.

A special data type

11

Objective-C – (Input / Output)

• NSLog is used to print out the content to the
log file. Its main use is for debugging in
development.

 e.g
 NSLog(@”Hello World \n Welcome !”);

New Line characters

Must use @ before a string

12

Objective-C – (Input / Output)

e.g.

 double d= 123.45;

 char ch = ‘d’;

 NSLog(@”d = %f”, d);

 NSLog(@”ch=%c”, ch);

These are format specifiers
used as a placeholder for the

value of the variable.

13

Objective-C – (Input / Output)

• Common format specifiers

Specifier Descriptions

%d, %D, %i Signed 32 bit integer (int)

%u, %U Unsigned 32 bit integer (unsigned int)

%x, %X Unsigned 32 bit integer, printed in hexdecimal

%o, %O Unsigned 32 bit integer, printed in octal

%f 64 bit floating point number (double)

%e, %E, %g, %G 64 bit floating point number (double) with
scientific notation

%c 8 bit unsigned character

%@ Objective C object, like String

14

Objective-C (Input / Output)

• Traditional C’s printf() and scanf() can also be
used for input and output.

e.g.
 float amount;
 NSLog(@”Please enter your amount”);
 scanf(“%f”, &amount);

 NSLog(@”Your amount is %f”, amount);
 printf(“Welcome for your help”);

Address Operator must
be added

No need to use @
15

Objective-C – (Operators)

• An operator is a symbol that tells the compiler to
perform specific mathematical or logical manipulations

• Types of Operators
– Arithmetic Operators

– Relational Operators

– Logical Operators

– Bitwise Operators

– Assignment Operators

– Misc Operators

16

Objective-C – (Operators)

• Arithmetic Operators

17

Objective-C – (Operators)

• Relational Operators

18

Objective-C – (Operators)

• Logical Operators

19

Objective-C – (Operators)

• Bitwise Operators

e.g.

20

Objective-C – (Operators)

• Assignment Operators

21

Objective-C – (Operators)

• Misc Operators

22

Objective-C – (Decision Making)

• Condition will be true if
it is non-zero or non-null
value

• Condition will be false if
it is zero or null value

23

Objective-C – (Decision Making)

• Syntax examples

– If condition

– If else condition

24

Objective-C – (Decision Making)

• switch-case

Remind to add beak

statement

25

Objective-C – (Loop)

• A loop statement allows us to execute a
statement or group of statements multiple times

26

Objective-C – (Loop)

• Syntax examples

– while loop

– do while loop

27

Objective-C – (Loop)

• for loop

• nested loop

28

Objective-C – (Functions)

• A function is a group of statements that together
perform a task

• Every Objective-C program has one C function, which
is main()

• A function declaration tells the compiler about a
function's name, return type, and parameters

• A function definition provides the actual body of the
function.

29

Objective-C – (Functions)
• In Objective-C, we called functions as methods

• Method syntax

e.g.

 - (int) max: (int) num1 secondNumber: (int) num2 {

 ……..

 }
30

Objective-C – (Functions)

• A function declaration
 - (int) max: (int) num1 secondNumber: (int) num2;

• A function implementation
 - (int) max: (int) num1 secondNumber: (int) num2 {
 ………

 }

• A function call

 [ObjectName max:30 secondNumber:20];

31

Objective-C – (Array)

• Array is a data structure used to store a collection of data

• Declaring Array
 int balance[10];

• Initializing Array
 int balance[5] = {10,20,30,40,50};

• Accessing Array value

 amount = balance[3];

32

Objective-C – (Pointers)

• Each variable has a memory location and the
memory address can be accessed by &
operator.

e.g.
int x = 10;

NSLog(@”Address of x is %f”, &x);

Output can be – Address of x is 1c083ff

33

Objective-C – (Pointers)

• A pointer is a variable whose value is address of the
memory location

e.g
 int *p1 // p1 is a pointer to integer
 float *p2 // p2 is a pointer to a float
 double *p3 // p3 is a pointer to a double

• Assign NULL to a pointer for initialization

 int *p1 = NULL;

34

Objective-C – (Pointers)

• How to use pointer ?

35

Objective-C – (String)

• A string is represented by NSString or
NSMutableString

e.g

 NSString *greeting = @”Hello”;

 NSLog(@”Message %@”, greeting);

Must use a pointer variable

36

Objective-C – (String)

• Common String methods

37

Objective-C – (String)

38

Objective-C – (String)

• String usage example

39

Objective-C – (Class/Objects)

• A class is a template
or blueprint for
creating objects.

• A class combines both
data and methods
together into a single
package.

• Data and methods are
called members of
the class.

40

Objective-C – (Class/Objects)

• Class definition
– A class starts with @interface followed by the

interface(class) name; and the class body, enclosed by
a pair of curly braces.

– All classes are derived from the base class called
NSObject

Data of the class.
Called the instance

variables

Method of the class. Called
the instance methods 41

Objective-C – (Class/Objects)

• Class implementation
is the 2nd part of the
class definition. It will
start with
@implementation
and end with @end.

• The interface part
and the
implementation part
be in the same file or
in the separate files.

42

Objective-C – (Class/Objects)

• Creating Objects

– An object is created from the class by allocating

memory and then initialized

– Both objects will have its own data members and is
independent

43

Objective-C – (Class/Objects)

• Property is added to allow instance variable of
the class can be accessed outside the class.

• It will generate the getter and setter methods
automatically.

• Need to add synthesize statement in the
implementation class. But can be ignored in
latest XCode

44

Objective-C – (Class/Objects)

– An instance variable with property can be accessed
by the dot notation.

 e.g box1.height = 5.0;

– An instance variable with property can be read by the
following method.
 e.g float myheight = [box1 height];

– An instance variable with property can be set by the
following method.
 e.g [box1 setHeight:10.0];

45

Objective-C – (Inheritance)

• Inheritance allows us
to define a class in
terms of another class
which makes it easier
to create and maintain
an application.

46

Objective-C – (Inheritance)

• Inheritance Access Control

A derived class inherits all base class methods and
variables with the following exceptions:

– Variables declared in implementation file

– Methods declared in implementation file

– In case the inherited class implements the method
in base class, then the method in derived class is
executed

47

Objective-C – (Encapsulation)

• Encapsulation is a concept
that binds together the data
and functions that
manipulate the data and
that keeps both safe from
outside interference and
misuse

• Objective-C supports the
properties of encapsulation
and data hiding through the
creation of the classes.

48

Objective-C – (Polymorphism)

• Polymorphism means having “many forms”. Typically,
polymorphism occurs when there is a hierarchy of classes and
they are related by inheritance.

• Objective-C polymorphism means that a call to a member
function will cause a different function to be executed depending
on the type of object that invokes the function.

49

Objective-C – (Polymorphism)

Polymorphism happens
here

50

Objective-C – (Protocol)

• Objective-C allows you to define protocols, which
declare the methods expected to be used for a
particular situation. Protocols are implemented in
the classes conforming to the protocol.

51

Objective-C – (Protocol)
In the example we have
seen how the delegate
methods are called and
executed. Its starts with
startAction, once the
process is completed, the
delegate method
processCompleted is
called to intimate the
operation is completed.

52

Objective-C – (Protocol)

53

Objective-C – (Category)

• By using category, one can add new functions
to an existing class.

e.g

New Method is added to
NSString class

New method is called
54

Frameworks

• A framework is a collection of predefined classes
and methods.

• Mac OS X has provided over 80 frameworks for
developers

• 3 frameworks used in every app are
– Foundation framework

– Application Kit framework

– UI Kit framework

55

Foundation Framework

• In this framework, we can find the following
popular classes

– NSNumber,

– NSString, NSMutableString

– NSArray, NSMutableArray

– NSDictionary, NSMutableDictionary

– NSFileManager and more

56

NSNumber – Methods

• Popular Methods

57

NSNumber – Methods

58

NSNumber – Methods

Methods Description

-(BOOL) isEqualToNumber:
(NSNumber *) aNumber

Return YES if equal to aNumber
Return NO if not equal to aNumber

-(NSComparisonResult) compare:
(NSNumber *) aNumber

Return NSOrderedAscending if < aNumber
Return NSOrderedSame if = aNumber
Return NSOrderedDescending if > aNumber

59

Return Name Value Represented

NSOrderedAscending -1

NSOrderedSame 0

NSOrderedDescending 1

NSNumber - Example

60

NSNumber - Example

61

NSString - Methods

62

NSString - Methods

63

NSMutableString - Methods

Methods Description

+(id) stringWithCapacity:
(NSUInteger)capacity

Create a string which can store capacity
number of characters

-(void)appendString(NSString *)aString Append aString behind

-(void)deleteCharactersInRange:(NSRange)
aRange

Delete part of the string specified by
NSRange

-(void)insertString(NSString *)aString
atIndex:(NSUInteger) anIndex

Insert string into existing string at
specified index.

64

NSString - Example

65

NSString - Example

66

NSArray - Methods

Methods Description

+(id) arrayWithObjects(id)firstObj, ….. Create an array putting objects inside, end
with a nil. e.g. str1, str2, str3, …. nil

-(NSUInteger) count Return the length of the array

-(NSUInteger) indexofObject(id)anObject If the array contains anObject, return its
index. Otherwise, return NSNotFound

-(id)objectAtIndex(NSUInteger) index Return the object at the index specified

-(void) makeObjectsPerformSelector:
(SEL)aSelector

Request all the objects inside the array to
perform the aSelector methods.

67

NSMutableArray - Methods

Methods Description

-(void)addObject:(id) anObject Add anObject into the array

-(void)removeObject: (id) anObject Remove anObject from the array

-(void)sortUsingSelector: (SEL)
comparator

Using the comparator method to sort the
array

-(void)replaceObjectAtIndex:(NSUInteger)
index withObject: (id) anObject

Replace the object with anObject at the
specified index position

-
(void)exchangeObjectAtIndex:(NSUInteger)
idx1 withObjectAtIndex:(NSUInteger)idx2

Exchange the 2 objects the idx1 and idx2

68

NSArray - Examples

69

NSArray - Examples

70

Print method is the method we
need to define via Category

NSDictionary - Methods

Methods Description

+(id)dictionaryWithObjects:(NSArray *)
objects forKeys:(NSArray *)keys

Create a dictionary object with objects
and keys as a pair

-(NSUInteger) count Return the number of objects in the
dictionary

-(id) objectForKey: (id) aKey Return the object for the key aKey

71

NSMutableDictionary - Methods

Methods Description

+(id) dictionaryWithCapacity:(NSUInteger)
numItems

Create a dictionary object with
numItems capacity

-(id) initWithCapacity:(NSUInteger)
numItems

Initialize a dictionary object with
numItems capacity

-(void) setObject:(id)anObject forKey:(id)
aKey

Put anObject into the dictionary with
aKey as the identifier

-(void) removeObjectForKey:(id) aKey Remove the object identified by the aKey

72

NSDictionary - Examples

73

