'\" te .\" Copyright (c) 2007, Sun Microsystems, Inc. All Rights Reserved .TH mlib_SignalLPCAutoCorrelGetPARCOR_S16 3MLIB "2 Mar 2007" "SunOS 5.11" "mediaLib Library Functions" .SH NAME mlib_SignalLPCAutoCorrelGetPARCOR_S16, mlib_SignalLPCAutoCorrelGetPARCOR_S16_Adp \- return the partial correlation (PARCOR) coefficients .SH SYNOPSIS .LP .nf cc [ \fIflag\fR... ] \fIfile\fR... \fB-lmlib\fR [ \fIlibrary\fR... ] #include \fBmlib_status\fR \fBmlib_SignalLPCAutoCorrelGetPARCOR_S16\fR( \fBmlib_s16 *\fR\fIparcor\fR, \fBmlib_s32\fR \fIpscale\fR, \fBvoid *\fR\fIstate\fR); .fi .LP .nf \fBmlib_status\fR \fBmlib_SignalLPCAutoCorrelGetPARCOR_S16_Adp\fR( \fBmlib_s16 *\fR\fIparcor\fR, \fBmlib_s32 *\fR\fIpscale\fR, \fBvoid *\fR\fIstate\fR); .fi .SH DESCRIPTION .sp .LP Each of the functions returns the partial correlation (PARCOR) coefficients. .sp .LP In linear predictive coding (LPC) model, each speech sample is represented as a linear combination of the past \fBM\fR samples. .sp .in +2 .nf M s(n) = SUM a(i) * s(n-i) + G * u(n) i=1 .fi .in -2 .sp .LP where \fBs(*)\fR is the speech signal, \fBu(*)\fR is the excitation signal, and \fBG\fR is the gain constants, \fBM\fR is the order of the linear prediction filter. Given \fBs(*)\fR, the goal is to find a set of coefficient \fBa(*)\fR that minimizes the prediction error \fBe(*)\fR. .sp .in +2 .nf M e(n) = s(n) - SUM a(i) * s(n-i) i=1 .fi .in -2 .sp .LP In autocorrelation method, the coefficients can be obtained by solving following set of linear equations. .sp .in +2 .nf M SUM a(i) * r(|i-k|) = r(k), k=1,...,M i=1 .fi .in -2 .sp .LP where .sp .in +2 .nf N-k-1 r(k) = SUM s(j) * s(j+k) j=0 .fi .in -2 .sp .LP are the autocorrelation coefficients of \fBs(*)\fR, \fBN\fR is the length of the input speech vector. \fBr(0)\fR is the energy of the speech signal. .sp .LP Note that the autocorrelation matrix \fBR\fR is a Toeplitz matrix (symmetric with all diagonal elements equal), and the equations can be solved efficiently with Levinson-Durbin algorithm. .sp .LP See \fIFundamentals of Speech Recognition\fR by Lawrence Rabiner and Biing-Hwang Juang, Prentice Hall, 1993. .sp .LP Note for functions with adaptive scaling (with \fB_Adp\fR postfix), the scaling factor of the output data will be calculated based on the actual data; for functions with non-adaptive scaling (without \fB_Adp\fR postfix), the user supplied scaling factor will be used and the output will be saturated if necessary. .SH PARAMETERS .sp .LP Each function takes the following arguments: .sp .ne 2 .mk .na \fB\fIparcor\fR\fR .ad .RS 10n .rt The partial correlation (PARCOR) coefficients. .RE .sp .ne 2 .mk .na \fB\fIpscale\fR\fR .ad .RS 10n .rt The scaling factor of the partial correlation (PARCOR) coefficients, where \fBactual_data = output_data * 2**(-scaling_factor)\fR. .RE .sp .ne 2 .mk .na \fB\fIstate\fR\fR .ad .RS 10n .rt Pointer to the internal state structure. .RE .SH RETURN VALUES .sp .LP Each function returns \fBMLIB_SUCCESS\fR if successful. Otherwise it returns \fBMLIB_FAILURE\fR. .SH ATTRIBUTES .sp .LP See \fBattributes\fR(5) for descriptions of the following attributes: .sp .sp .TS tab() box; cw(2.75i) |cw(2.75i) lw(2.75i) |lw(2.75i) . ATTRIBUTE TYPEATTRIBUTE VALUE _ Interface StabilityCommitted _ MT-LevelMT-Safe .TE .SH SEE ALSO .sp .LP \fBmlib_SignalLPCAutoCorrelInit_S16\fR(3MLIB), \fBmlib_SignalLPCAutoCorrel_S16\fR(3MLIB), \fBmlib_SignalLPCAutoCorrelGetEnergy_S16\fR(3MLIB), \fBmlib_SignalLPCAutoCorrelFree_S16\fR(3MLIB), \fBattributes\fR(5)